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This paper discusses potential applications of fuzzy set theory to risk analysis in the area of 
industrial safety engineering. Vagueness and imprecision in mathematical quantification of risk 
are equated with fuzziness rather than randomness. The concept of risk evaluation, using 
linguistic representation of the likelihood of the occurrence of a hazardous event, exposure, and 
possible consequences of that event, is proposed. The approximate reasoning technique based 
on fuzzy logic is used to derive fuzzy values of risk. 
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1. Introduction 

A n  assessment of  risk in industrial and urban  envi ronments  is essential in the 
prevent ion  of accidents and in the analysis of  si tuations potential ly hazardous  to 
public heal th and safety [1, 2]. The  problems of risk, broadly  defined as an 
undesirable implication of  uncertainty [3], and its analysis can be classified into 
two distinct categories.  The  first ca tegory  of problems deals with uncertainties 
which are essentially r a n d o m  and, therefore ,  probabilistic. The  second category 
involves problems which are not  really probabilistic,  but  cause uncertainty due to 
imprecision associated with complexi ty of the systems under  investigation as well 
as vagueness  of  h u m a n  thought  and percept ion  processes. 

Mathemat ica l  evaluat ions for controll ing hazards  and calculating risk in the 
area of  systems safety equate  imprecision with randomness  only. Accord ing  to 
Malasky [4], the probabil i ty distr ibution is used in o rder  to "compensa te  for the 
fact that  the given nominal  value of any parameter ,  even if explicitly defined, is 
rarely known with absolute precis ion".  Therefore ,  the quantification is usually 
obta ined  by assigning to each set of  events a probabil i ty measure .  

However ,  in many  cases it is virtually impossible to determine precisely the 
value of the probabil i ty of a given event.  Such a situation may  be due either to 
lack of evidence or  to the inability of the safety engineer  to make  a significant 
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assessment of the frequency of occurrence of an event [5]. In other  words, the 
probability of an event may be ill-defined, and instead of specifying its numerical 
value (e.g., 0.5), one would simply say that a given event is 'more or less likely', 
' remotely possible', etc., where terms such as 'likely' and 'possible' are vague and 
imprecise descriptors which are frequently used by risk analysts [6]. Use of such 
value judgments introduce uncertainty which is the result of fuzziness, not 
randomness. 

Recent advances in the theory of fuzzy sets make it possible to study the 
complex and ill-defined systems (and concepts) where uncertainty is due to 
fuzziness, or degree vagueness [7]. In this paper, a fuzzy set theoretic approach to 
risk analysis is proposed as an alternative to the techniques currently used in the 
area of systems safety, and linguistic variables [8] are introduced to analyze 
potentially hazardous situations using approximate reasoning methods. 

2. The use of verbal descriptions in risk analysis 

According to Fine [6], the risk (or uncertainty of loss) imposed by a particular 
hazard increase with the likelihood of occurrence of the event (L), exposure (E), 
and the possible consequences (C) of that event. Hazard is defined as "some 
potential danger beyond one's immediate control" [2], and it is assumed that 
although all hazards can never be completely eliminated, the associated risks from 
the hazards can be reduced. In a traditional approach, the calculation of a quantitative 
value of risk (S) is usually based on an assignment of numerical values of each of 
the above factors. The product of the values of likelihood, exposure and conse- 
quences, called 'risk score', is then derived. Using experts '  judgements, several risk 
scores for many different hazardous situations can be obtained and ordered with 
respect to seriousness of their risks. Such a risk score summary is then presented 
to safety managers in order  to undertake specific action and reduce the existing 
hazards. 

Development  of a practical safety analysis system for hazard control [2] 
indicates that engineers have long recognized the imprecise nature of risk evalua- 
tions and the importance of judgments based on sound experience [9, 10]. Since 
risk is a concept which is not absolutely objective in nature [11], but  rather  
relative and subjective, the notion of risk must be looked upon in terms of the 
interaction between the object  (environment) and the subject (individual asses- 
sor). Furthermore,  as stated by Feagans [12] risk is a fuzzy concept in the sense 
that there does not exist a unique risk that a hazardous event will occur in a given 
period of time. 

Risk analysis deals then with quantities which are inherently imprecise and 
whose future values are uncertain. Therefore,  such values may be based on 
subjective judgments, especially when one deals with non-numerical data. As 
suggested by Zimmer [ 13], although humans are quite unsuccessful in quantitative 
predictions, they may be comparatively efficient in qualitative forecasting. In fact, 
the knowledge of experts usually consists of qualitative variables stated verbally, 
as evidenced by recent developments in knowledge-based expert systems [14]. 



Fuzzy methods in risk analysis 107 

Moreover,  people are more prone to interference from biasing tendencies if one 
forces them to give numerical estimates. This is due to the fact that by eliciting 
numerical estimates one is forcing people to operate in 'a mode'  which requires 
more mental effort [15]. 

The meaning of verbal descriptors is usually vague and it may be difficult to find 
their numerical representations [15-19]. Nevertheless, in the area of systems 
safety, analysts have worked out a method for risk assessment which is primarily 
based on human judgment and experience. Through trial and error,  several verbal 
descriptors of the risk score were derived, and their approximate numerical 
correspondents were found. Such descriptors relate to all three factors, i.e.: (1) 
the likelihood that some hazardous event will occur, (2) the exposure to that 
particular hazardous situation, and (3) the possible consequences should the 
hazardous event actually occur [2]. These descriptors are shown in Table 1. 

Table 1 

Descriptors used in risk analysis after [2] Corresponding fuzzy linguistic values 

1. Likelihood (of the accident-sequence) 
might well be expected 
quite possible 
unusual but possible 
only remotely possible 
conceivable, but highly unlikely 
practically impossible 

2. Exposure (to the hazardous event) 
continuous (many times daily) 
frequently (once a day) 
occasionally (one per week or month) 
monthly (one per month/year) 
rarely 
very rare 

3. Consequences (of the accident) 
catastrophe (extensive damage, 

over $107; many fatalities) 
disaster ($106-107 , fatalities) 
very serious ($103-106, a fatality) 
serious ($104-105 , serious injury) 
important ($103-104 , disability) 
noticeable ($102-103 , first aid) 

[very likely] 
[likely] 
[more-or-less likelyl 
[unlikely] 
[very unlikely] 
[very very unlikely, impossible] 

[very high] 
[high] 
[moderate] 
[more-or-less low] 
[low] 
[very low] 

[extremely high] 
[very high] 
[high] 
[medium] 
[more-or-less medium] 
[low] 

Since fuzzy set models of human judgment permit translation of verbal expres- 
sions into numerical ones [15], and deal with imprecisions in the expression of the 
occurrence of events, in this paper an attempt was made to develop the fuzzy 
linguistic model of the above practical risk analysis system. 
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3. Fuzzy linguistic variables and risk factors 

The overall risk score is obtained in a traditional approach as a product  of 
exposure, likelihood, and consequences of a possible accident due to the hazard. 
An assignment of numerical values to any of the above components of the 'risk 
score' is subjective by the nature of human judgment. For example, although the 
concept of probability as suitable for risk analysis is well defined, it does not 
provide for the sharp probability estimates needed to generate adequate risk 
estimations. Instead, the quantification of ' likelihood' is imprecise since it uses 
linguistic descriptors like: quite possible, unusual but possible, very unlikely, etc. 
An event here is clearly stated, but its probability is vaguely defined, and 
therefore,  it is also imprecise. Therefore,  the probability P is treated here as a 
linguistic variable [8] with the typical values (Pi) such as: likely, very likely, more or 
less likely, very unlikely, etc., with the understanding that likely is synonymous 
with probable. 

Since the likelihood of occurrence of the hazardous event is related to the 
probability that it might actually occur [2], the numerical variable 'probable' ,  with 
values 0 ~ Pi ~ 1, is the base variable for the 'likelihood'. A linguistic value such 
as likely is interpreted as a label for the fuzzy restriction (characterized by its 
compatibility function) on the values of the base variable. Typical values of the 
linguistic variable contain primary terms, such as likely and unlikely; hedges such 
as very, more or less, quite, extremely, and somewhat; and fuzzy connectives such 
as and, or, and either; as well as negation, not. The connectives, negation and 
hedges are treated as modifiers of the operands (primary terms) in a context- 
dependent  situation [8]. 

In a practical safety analysis system [2], two likelihoods are established as 
defined reference points with arbitrarily assigned values of likelihood. These are 
(1) 'a completely unexpected and unanticipated (but remotely possible) event '  
(value of 1), and (2) an event that 'might well be expected at some future time', 
(value of 10). There  are also event likelihoods perceived as 'highly unlikely', 
'practically impossible' and 'virtually impossible' with the numerical values of 0.5, 
0.2 and 0.1, respectively. The above information can be used to develop context 
specific values of likelihood. 

3.1. Interpretation of the linguistic values 

It should be emphasized here, that although the meaning of the proposed 
linguistic values are open to individual interpretation, the differences in subjective 
assessments can be resolved by extending the precision of associated verbal 
definitions through discussion among the experts in the field of risk analysis. It is 
very important that the structure of verbal descriptors does not cause misunder- 
standing [3, 12], and this can be prevented if the agreed upon definitions are 
provided. As indicated by Cooley and Hicks [20], primary linguistic values should 
have an intuitive appeal and be easily differentiated. For that reason, the values 
'likely' and 'unlikely' were proposed to represent verbal descriptors which are 
most frequently used by risk analysts, i.e. 'quite possible' and 'only remotely 
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possible', respectively. The other values of likelihood were derived by the use of 
the appropriate hedges (see Table 2). 

Table 2 

Individual term Compatibility function 

high 0 0 0.1 0.3 0.7 0.9 1 
medium 0 0.2 0.7 1.0 0.7 0.2 0 
low 1 0.9 0.7 0.3 O. 1 0 0 
unknown 1 1 1 1 1 1 1 
undefined 0 0 0 0 0 0 0 

more or less high 0 0 0.3 0.5 0.85 0.95 1 
very high 0 0 0 0.1 0.5 0.8 1 

likely 0 O. 1 0.5 0.7 0.9 1 l 
unlikely 1 1 0.9 0.8 0.5 0 0 
not likely 1 1 0.5 0.3 0.1 0.1 0 

According to Narasimhan [21] a me.thod of empirical definitions of the most 
important linguistic values, and use of the concepts of fuzzy set theory to define 
the other values, seems to be an advantageous one. Clements [22] reported 
satisfactory results when applying the predefined linguistic values (for the users 
who were trained as to their meaning) to the analysis of computer security 
systems. One must still keep in mind that the assessor himself is an essential 
source of fuzziness, since the same hazardous event may be perceived differently 
depending upon the experience and individual preferences in risk acceptability 
[11]. 

The compatibility functions for the chosen linguistic values are represented by a 
string of numbers rather than a continuous function [23, 24]. In the computerized 
version of the proposed systems, the user will be able to derive the representa- 
tions of the primary linguistic terms by using the canonical forms of the S and ~r 
functions [25], and adjusting the appropriate parameters. 

3.2. Definitions of risk factors 

The degree or severity of consequences (C) of the particular event due to some 
hazard conditions, and the exposure (E) to such hazard were defined in the similar 
way as the likelihood (L) of the event. The base variable for the degree of 
consequences was represented by the extent of property damage, and/or by the 
seriousness of the injuries (ranging from minor cuts of one individual to numerous 
fatalities), expressed by the amount of loss, in a range from $10 2 to $10 7 (see 
Table 1). The primary terms of the variable consequences (C) are high, low, and 
medium, with the graphical interpretations depicted in Figure 1. 

Similarly, the primary terms for the variable exposure (E) were defined. The 
base variable was defined numerically by the relative frequency of occurrence of 
the hazard events, in days of operation. Graphical interpretation of these values is 
depicted in Figure 2. 
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Fig. 1. Linguistic values for 'consequences'. 
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In choosing the base variable for the risk factors, the following guidelines were 
taken into consideration [20]: (1) the base variable should accurately reflect the 
meaning of the linguistic value, (2) the values associated with a particular 
linguistic value should not change because of low or moderate judgment uncer- 
tainties, (3) strong judgment changes should be recognized by the appropriate 
movements along the base scale, and (4) small changes in judgment should not 
significantly affect the results of the model. 

As indicated above, most of the primary terms for the linguistic variables can be 
derived based on empirical data and the experience of safety experts, as evi- 
denced by the numerical reference points associated with each of the descriptive 
(verbal) estimates of the magnitude of likelihood, exposure, and consequences. 
According to Shinochaura [11], the successful application of the linguistic ap- 
proach largely depends as much upon the skill of the analyst as the nature of the 
problem itself. 
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Fig. 2. Linguistic values for 'exposure'. 
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4. Approximate reasoning and fuzzy risk scores 

In a traditional approach to risk analysis [2, 6], the seriousness of the risk due 
to a recognized hazard (risk score) is calculated as the product of numerical 
ratings assigned of each of the three factors. The risk score is then compared with 
the Risk Score Summary. This is done to make a recommendation with respect to 
an appropriate action to be undertaken in order  to reduce or eliminate existing 
hazards. For example, for the hazards with higher risk scores (high risk zone) the 
action columns calls for ' immediate '  corrective action, while medium risk scores 
are in the action category called 'urgent' .  

Although in the first step of the above procedure the analyst is required to 
select some verbal descriptors of each of the three risk factors, in the second step 
these are translated into single numbers, and their product (risk score) is trans- 
lated back into the action column, with verbal description of the seriousness of 
risk. Also, the risk scores do not have unique recommended actions, but a broad 
range of risks, for example between 270 and 1500 is considered to constitute the 
highest hazards for which an immediate corrective action is required. Clearly, 
there must be some difference in seriousness of perceived risk, and different 
actions (if any) may be required for the hazards with the risk scores of 270 and 
1500. 

4.1. Vagueness  in risk analysis  

Logically, the risk analysis can be based on the following premise: n~ exposure = 
(e) and l ikelihood = (1) and consequences = (c), THEN risk = (s), where s stands for 
the linguistic variable with such values as very high, high, substantial  risk, possible 
risk, and some slight risk. The above linguistic values are based on the numerical 
magnitude of the risk score. Still, the meaning of the above propositions are 
vague, and therefore the rules of classical logic are not applicable. 

People usually organize their world knowledge by causal relationships, and in 
reasoning people apply what they are most familiar with, i.e. the rules underlying 
conversation and language [26]. However,  the application of rules of classical 
logic implies that the meaning of propositions is unambiguous [13]. Because all 
the factors in risk analysis are vague and imprecise, an alternative method must be 
used, allowing for approximate reasoning from the vague inputs. The method 
used here is based on fuzzy reasoning [25, 27]. In the following section the 
exploratory usage of fuzzy (or approximate) reasoning is presented. 

4.2. Fuzzy models  in risk analysis  

As stated by Zadeh [28] the approximate (fuzzy) reasoning refers to the process 
by which an imprecise conclusion is deduced from a collection of imprecise 
premises, and such reasoning is qualitative rather than quantitative in nature. As 
evidenced by the published literature [10, 16, 18, 24, 29] there have been 
numerous applications of fuzzy logic and approximate reasoning techniques in 
many different areas of interest. In this paper, we propose to base the risk analysis 
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on the method of approximate reasoning [24, 27] which utilizes fuzzy conditional 
statements and compositional rules of inference. 

A fuzzy conditional statement: IF A THEN B, or A -~ B, where the antecedent 
(A) and consequent (B) are fuzzy sets, describes a fuzzy relation R between two 
fuzzy variables A and B. If A is a fuzzy subset in a universe of discourse U, and B 
is a fuzzy subset of a universe of discourse V, then the Cartesian product  of A and 
B is defined as a fuzzy relation R: 

A x B = ~ (fA(u)Afs(v))/(U, V)), 
R = U x V  

(1) 

where R is usually given in the form of a matrix, and ~ stands for the union. 
According to Mamdani's conjunctive logic [24], if the fuzzy relation R, from U 

to V, is known, and A is a fuzzy subset of U, then the fuzzy subset B of V, which 
is induced by A, is given by the composition of R and A as follows: 

B = A o n ,  (a )  

where B is given by the max-min product  of A and R:  

B = A  oR f f  fB(v)=sup  ( fA(u)AfR(u,  V))/(V). (3) 
u 

For example, if it is known that exposure ='high ' ,  and the relation between 
exposure and risk (where risk is also defined as a linguistic variable) is R, then the 
value of risk can be found using the compositional rule of inference. 

Although, there are many different ways of interpreting conditional proposi- 
tions for the purposes of fuzzy reasoning (for a review see [30] and [31]), in this 
paper only Zadeh's  maximin rule [28] was used. The elementary models of 
approximate reasoning from conditional propositions were taken from Baldwin 
and Pilsworth [30]. 

4.3. Expert derived verbal rules for risk assessment 

A number of simple production rules, which would be most likely perceived in 
a similar way by a majority of risk analysts, can be relatively easily identified. For 
example, if exposure is known to be 'very high', likelihood is 'very likely', and 
consequences are 'very high', then risk could be defined as 'very very high' or 
'extremely high'. However,  in many other  cases derivation of the risk value is not 
that obvious and hence derivation may be very difficult. 

For the purpose of this study, two different examples of risk estimation in 
hypothetical situations are considered. The first example refers to the situation in 
which both exposure and likelihood are more or less constant and can be easily 
estimated, but the potential consequences may vary considerably, and therefore 
the value of risk will also change. The second example deals with the estimation 
of risk in a situation where originally the relationships between the given factors 
and risk, and risk values are known, and where the risk factors change inducing a 
change in the original value of risk. 
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Example  1. Suppose  the exposure or  f requency of  occurrence  of  the hazard  event  
that  could start an accident sequence  is 'high' ,  mean ing  that  the hazard  event  
occurs daily. The  likelihood that  once  the hazard  event  occurs, the complete  
accident sequence of  events will follow, is perceived as ' l ikely'  or  'quite possible ' .  
A l though  these two factors are considered to be relatively constant ,  the conse- 
quences of the hazard  event  may  change,  depend ing  upon the t ime of  the day, and 
therefore  may  be perceived differently at different times. The quest ion to be 
answered is how would the value of  risk (S) be affected by changes in potential  
consequences f rom 'more-or - less  m e d i um '  to 'h igh '?  

Suppose  the following universes of  discourse and relevant proposi t ions (see 
Table  2 for  the definitions of  linguistic values) are defined: 

Exposure  X z = {el, e2, e3, e4, e5, e6, e7}, 
Likel ihood XL = {ll, 12, 13, 14, 15, 16, 17}, 
Consequences  Xc = {Cl, c2, c3, c4, cs, c6, c7}, 
Risk Z = { z l ,  z2, z3, Z4, ZS, Z6, Z7}, 

and 
Pz: E = 'h igh '  = (0, 0, 0.1, 0.3, 0.7, 0.9, 1.0), 
PL: L = ' l i ke ly '=  (0, 0.1, 0.5, 0.7, 0.9, 1.0, 1.0), 
Pcl: C1 = 'more-or - less  m e d i u m ' =  (0, 0.45, 0.84, 1.0, 0.84, 0.45, 0), 
Pc2:C2 = 'very h i g h ' =  (0, 0, 0, 0.1, 0.5, 0.8, 1.0), 
Ps: S= '~ '  

where  Pz c XE, Pc c X o  PL c XL, and S c Z. Pi for i = (E, (7, L and S) are fuzzy 
proposi t ions,  and XE, Xc, XL and Z are universes of discourse. 

The  fuzzy relat ion R be tween E = Pz and L = PL is the produc t  of  Pz and PL 
in the following form:  

R E x  L = 

- 0  0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0.1 0.1 0.1 0.1 0.1 0.1 
0 0.1 0.3 0.3 0.3 0.3 0.3 
0 0.1 0.5 0.7 0.7 0.7 0.7 
0 0.1 0.5 0.7 0.9 0.9 0.9 

-0  0.1 0.5 0.7 0.7 1.0 1.0 

Since the risk S = Pc ° R E x L ,  then according to equa t ion  (3), 

$1 = (0, 0.1, 0.5, 0.7, 0.7, 0.7, 0.7), 

$2 = (0, 0.1, 0.5, 0.7, 0.9, 1.0, 1.0) or  'high' .  

In o ther  words,  if the consequences  are 'very high '  then the risk is 'high' .  A n  
interpreta t ion of  S1 when consequences  are 'more-or- less  med ium '  will be discus- 
sed below. 

Example 2. Cons ider  the hazardous  si tuation in which the following fuzzy condi-  
t ional s ta tement ,  given by a human  expert ,  applies: IF exposure = ' v e r y  high' ,  
consequences = 'more  or  less high' ,  likelihood = 'likely'  THEN risk = 'high' .  We will 
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define the following proposi t ions:  
PE: E = 'very  high '  = (0, 0, 0, 0.1, 0.5, 0.8, 1.0), 
Pc:  C = 'more  o r  less high '  = (0, 0, 0.3, 0.5, 0.85, 0.95, 1.0), 
PL: L = ' l ikely'  = (0, 0.1, 0.5, 0.7, 0.9, 1.0, 1.0), 
Ps :  S = 'h igh '  = (0, 0, 0.1, 0.3, 0.7, 0.9, 1.0). 

The  above s ta tement ,  concerning  the value of  risk unde r  the descr ibed hazardous  
condit ion,  can be wri t ten using fuzzy logic [30] as follows: 

w ( E = P E ) N ( C × P c ) N ( L  = P L )  THEN S = P s  (4) 

subject  to a proposi t ional  assertion P = P E N  P c  N PL. Such a condit ional  propos i -  
t ion defines a relat ion D,  where  D c XE x X c  x XL  × Z.  This can be expressed 
using the m a x - m i n  definition as 

D = DE N D c  f"IDL (5) 

and primitive condit ional  proposi t ions  are in the form of: 

w E THEN S ( D E ) I  

IF CTHEN S ( D c ) [  D i c X i x Z  for  i = (E, C, L) ,  (6) 
| 

IF L THEN S ( D L ) J  

o r  equivalently:  

IF E = P E  THEN S = PS ~ DE = PE X Ps, 

IF C =  Pc  THEN S = Ps ~ D c  = P c  X Vs, 

IF L = Pr. THEN S = es  ~ DL = PL X Ps. 

The  relat ionship be tween  l ikel ihood and risk (Xr_ x Z) ,  exposure  and risk 
( X E X Z ) ,  and consequences  and risk ( X c X Z )  can be established by h u m a n  
experts,  as is done  in the tradit ional  approach .  Consider ing the primitive condi-  
t ional proposi t ions  given by (6), we derive the following fuzzy relat ions D r ,  D o  
and DL using formula  (3): 

-0  
0 
0 

D E c X E x Z =  0 

0 

0 

-0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0.1 0.1 0.1 0.1 
0 0.1 0.3 0.5 0.5 0.5 
0 0.1 0.3 0.7 0.8 0.8 
0 0.1 0.3 0.7 0.9 1.0-- 

D c c  X c X  Z = 

"0 0 0 0 0 0 0 - 
0 0 0 0 0 0 0 
0 0 0.1 0.3 0.3 0.3 0.3 
0 0 0.1 0.3 0.5 0.5 0.5 
0 0 0.1 0.3 0.7 0.85 0.85 
0 0 0.1 0.3 0.7 0.9 0.95 

__0 0 0.1 0.3 0.7 0.9 1.0 
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"0 0 0 0 0 0 0 - 

0 0 0 0 0 0 0 

0 0 0.1 0.3 0.5 0.5 0.5 

0 0 0.1 0.3 0.7 0.7 0.7 

0 0 0.1 0.3 0,7 0,9 0.9 

0 0 0.1 0.3 0.7 0.9 1.0 

- 0  0 0.1 0.3 0.7 0.9 1 . 0 -  
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Let  us assume now that the conditions specified above have changed, and one 
has to deal with a new hazardous situation which induces a different value of risk. 
We will use the above model of approximate reasoning (fuzzy compositional rule 
of inference) to answer the following question: given (E) exposure = 'medium', 
(C) consequences = 'very high', and (L) likelihood = 'unlikely', what is the value of 
risk (S)? 

The compositional rule of inference [30] (as the least restrictive inference S c Z 
of P from D),  given by S = P o D, becomes now 

S = N (V, o D,) (7) 
i = (E,C,L) 

where PE = 'medium',  Pc = 'very high', and PL = 'unlikely' (see Table 2), and the 
above formula can be written as follows: 

S ( Z ) =  A ~ V [ p i ( x - i ) A d i ( x l ; z ) ] l -  (8) 
i =(E,C.L) x~ L ~ J 

According to (8) the value of risk wil l then be equal to 

S = (PE o DE) fq (Pc o Dc)  n (PL ° Dr_). (9) 

After  performing relevant computations, one can obtain a numerical interpreta- 
tion of the linguistic value of risk (S) in a new hazardous situation. From [9] we 
have: 

S = ( 0  0 0.1 0.3 0.5 0.5 0 .5)N(0 0 0.1 0.3 0.7 0.9 1.0) 

N(0 0 0.1 0.3 0.5 0.7 0.7) 

= (0  0 0.1 0.3 0.5 0.5 0.5). 

which could be approximated by '[(more or less high) and (more or less 
medium)]'.  

5. Linguistic approximations and interpretations of the risk scores 

Verbal models [16, 32], or quantitative models with linguistic variables and 
verbally formulated relations between the variables, may be very useful in the 
area of systems safety in general [9, 10], and, as shown above, in risk analysis in 
particular. This is primarily due to the fact that human experts are capable of 
making knowledgable and reliable verbal statements about intuitively perceived 
phenomena of the real world [34]. Since the linguistic values are naturally vague, 
they allow greater flexibility than single numbers. 
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According to Wenst0p [16] by introducing linguistic variables as the inputs into 
models, one takes a step toward meeting the demand for validity. The problem 
remains, however, how to translate the fuzzy outputs into a meaningful set of 
linguistic values. Such a process, called linguistic approximation, is essential in risk 
analysis to decide on the corrective action that may need to be associated with a 
particular fuzzy value of risk. As seen in the example stated above, it is not a 
trivial task to find a label for such a fuzzy set (of risk) at S -- (0, 0.1, 0.5, 0.7, 0.7, 
0.7). 

Fortunately, some methods are presently available to deal with this problem. 
The simplest method, called the 'best fit' method is usually applied when the set 
of possible linguistic expressions is small, and it is computationally easy to 
calculate a distance from the fuzzy output to the fuzzy sets representing the 
available linguistic values. The natural term whose fuzzy set is the closest to the 
output is then selected as its meaning. Such a method was used in development  of 
the Fuzzy Risk Analyzer [33] in the domain of computer  systems security. 

Clements [22] proposed a more advanced method of 'successive approxima- 
tions' based on the evaluation of the endpoint  'brackets'  and hedges which are 
being replaced as the expression 'in progress' gets closer to the fuzzy set being 
approximated. Although a large number of natural expressions can be efficiently 
evaluated, the method requires that all fuzzy sets be convex. 

The LAMS system developed by Eshragh and Mamdani [18] does not require 
normality of fuzzy sets, and allows an assignment of linguistic values to a fairly 
complex fuzzy spread by labelling its segments. In this 'piecewise decomposition'  
technique, the linguistic expressions chosen for each interval are then combined 
using the fuzzy connectives 'and' or 'or' .  

WenstOp [16, 23] proposed a context independent,  quantitative analysis with 
linguistic values utilizing an APL auxiliary language. The linguistic approximation 
method, implemented by an APL's  L A B E L  function is based on two parameters  of 
the fuzzy set to be labeled, i.e. its imprecision (the sum of its membership values) and 
its location (the center of gravity). One of the 56 linguistic labels (spread out in a 
location-imprecision system) with the shortest distance to the coordinates of the 
fuzzy set to be labeled is chosen as the representation of the fuzzy output from the 
model. The main concern of this method is to ensure that the input-output  values 
are acceptable by the standards of natural language, provided that the linguistic 
expressions are used systematically and diligently. 

This short review of linguistic approximation techniques indicates that the 
meaningful interpretation of the fuzzy outputs of approximate reasoning models 
are not only possible, but can be efficiently performed with assistance of compu- 
ters. Technical feasibility to successfully use verbal models is of utmost importance 
with respect to the future work of developing domain oriented expert  system for 
risk analysis. 

6. Psychophysical judgment and measurement 

The important issue in developing a fuzzy model of the risk analysis system is 
practical derivation of the numerical representations for linguistic values of the 
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risk factors. This problem is one of measurement ,  i.e. the assignment of numbers 
to represent  propert ies of the involved events, objects or situations. Although 
measurements  of subjectivity perceived phenomena  is not an easy task, modern 
psychophysics offers methods that allow us to do just that. In fact, the 
psychophysical scaling techniques, extensively used in the field of experimental  
psychology [35, 36], are credited in contributions to the solution of problems in 
sensory processes, memory ,  learning, social behaviour and ergonomics/human 
factors. 

In psychophysical measurement ,  the extent to which the number  system reflects 
the propert ies  of objects or events define one of the three basic scales: ordinal, 
interval, or ratio. The conclusions that can be drawn about differences among 
numbers  are restricted to proper  recognition of the type of scale the particular 
measurement  constitutes [36]. Otherwise, serious errors in data analysis and 
interpretation may result. 

While ratio scales are the most desirable ones, they are often difficult, if not 
impossible, to develop. The scale of most practical use in industrial research is the 
interval scale. This scale measurement  requires that the numbers are assigned to 
propert ies (situations) in such a way that the differences among numbers  reflect 
the differences among propert ies  or situations being measured.  Since this is a 
sufficient condition in risk analysis, interval scaling can be used to develop 
numerical bases for the linguistic values of risk factors. 

One of the commonly applied methods to develop an interval scale is the 
'categorical judgment '  technique. Though there are many different ways through 
which category judgments may be derived, the most  extreme case is when the 
subject makes  his judgment  on a continuous line, and the marks are later 
categorized with a ruler [37, 38]. 

In order to provide for reliable distinction between different categories (linguis- 
tic descriptors in our case), it is often recommended  that the number  of categories 
be restricted to no more than seven. However ,  as indicated by Jones [37] even 
though apparent  reliability may go down, it sometimes is desirable to have more 
categories since one intends to establish category boundaries.  Thus, there may be 
some overlapping in stimulus placement.  This way the 'end-effect '  or a situation in 
which the subjects tend to avoid the use of one of the end categories can be 
diminished. 

The use of categorical judgments have been quite successful in many practical 
situations. The scales are usually easy for experts to use and give a lot of 
information in a relatively short time. Rodgers and Shealy [39] utilized an 
interval scaling technique to construct the degree of consequences  of a hazardous 
event. A word scale with linguistic descriptors ranging from 'minor  cuts and 
bruises' to 'catastrophe/mult iple fatalities' was presented to a group of 18 safety 
engineers (see Table 1). The subjects were asked to locate the linguistic descrip- 
tors, proposed originally by Fine [6], along a vertical line marked 0 (at the 
bot tom) and 100 (at the top). The average values and standard deviations 
measuring response variability were then plotted on the 0-100 scale (see Figure 
3). The authors concluded that contrary to the original scale where the descriptors 
were equally spaced along the scale (with the exception of the 'minor  cuts and 
bruises'  category), there was 'a considerable '  overlap in different subjects'  judg- 
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Fig. 3. Psychophysical scaling of 'consequences' (based on Rodgers and Shealy [39]). 

ments related to placement of 'temporary impairment' and 'minor temporary 
impairment' categories. 

The above interval scaling technique can be used not only to determine the 
location of different verbal descriptors on the interval scale, but also to derive a 
numerical representation of the compatibility functions for the linguistic values. 
This can be achieved by treating the derived scale as the base variable for 
consequences, and having the derived averages and their spreads as representations 
of the peak and border values of the respective linguistic descriptors. This way the 
differences in subjective opinions about judgmental factors of risk can be incorpo- 
rated into the model, and more objective representations of the linguistic values 
can be derived. 

7. Final remarks 

The theoretical considerations presented here are of a preliminary nature. Since 
human reasoning is intrinsically fuzzy, it is believed that the proposed approach 
will be very useful in the analysis of hazards and risks in many industrial 
environments. The advantage of the fuzzy approach lies in the fact that fuzzy 
reasoning can be computerized, thereby opening the possibility for creation of a 
fuzzy expert system in the area of risk analysis. 
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